Background: 20S-protopanaxadiol (PPD) is a major gastrointestinal metabolic product of ginsenosides. The latter share structural similarity with steroids and are the main pharmacologically active component in ginseng.
Methods: The authors investigated the interaction between aPPD and estrogen receptors (ER) in human breast adenocarcinoma MCF-7 cells through receptor binding assay, ER-induced gene expression, and cell proliferation both in vitro and in vivo.
Results: aPPD, but not its close analog ginsenosides, competed with the [(3)H]-17-beta estradiol (E2) for ER with IC(50) at 26.3 microM. aPPD alone weakly induced luciferase reporter-gene expression controlled by an estrogen-regulated element, which was completely blocked by tamoxifen. aPPD alone, or in synergy with tamoxifen, blocked E2-induced transcriptional activation. aPPD also inhibited colony formation of endometrial cancer cells. aPPD potently inhibited estrogen-stimulated MCF-7 cell proliferation and synergistically enhanced the cytotoxicity of tamoxifen on both ER+ MCF-7 and ER- MDA-MB231 cells. Furthermore, aPPD, but not tamoxifen, inhibited Akt phosphorylation. Growth of MCF-7 xenograft tumor supplemented with E2 was completely inhibited in animals treated with aPPD, tamoxifen, or aPPD plus tamoxifen.
Conclusion: These results suggested that aPPD inhibits estrogen-stimulated gene expression and cell proliferation in ER-positive breast cancer cells. In addition, aPPD synergistically enhances cytotoxicity of tamoxifen in an ER-independent fashion, probably by down-regulating Akt activity.
Source: Yu Y, Zhou Q, Hang Y, Bu X, Jia W. Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells. Cancer. 2007 Jun 1;109(11):2374-82.